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Abstract: A nonempirical valence-only LCAO-MO-SCF method is presented based on an adaption of the Phillips-Klein-
man pseudopotential to replace orthogonality constraints and on representation of the core-valence coulomb and exchange 
interactions by an exponential screening function. Computation times are greatly reduced compared to full ab initio calcula­
tions. Results are reported for main-group atoms up to atomic number 36, and for the molecules Ci, Si2, Ge2, and PF3. These 
are compared to conventional SCF results and, for C2 and PF3, with experiment. 

Despite rapid advances in computer technology in the 
last decade, ab initio calculations on relatively small mole­
cules containing elements of atomic number greater than 18 
(Ar) are still expensive and far from routine. Since the ex­
pense of a calculation increases roughly as the fourth power 
of the number of basis functions, even a 1000-fold increase 
in computer speed would allow only a six-fold increase in 
the complexity of a system to be investigated within the 
same computational time. Thus, investigation of many 
chemical problems using conventional ab initio methods 
does not seem possible in the near future. 

The success of semiempirical MO methods has been 
largely limited to elements of atomic number less than 10 
(Ne), due to lack of reliable spectroscopic data on the heav­
ier elements and to the breakdown of the common approxi­
mations for the various integrals. As an example of the lat­
ter, most methods take the off-diagonal core-hamiltonian 
integral H^ as proportional to the overlap integral between 
orbitals a and b. 

kS, (D 

Jug1 has shown that this approximation is poor for pff-pff in­
tegrals over symmetrically orthogonalized orbitals. Equa­
tion 1 constrains / / a b to have the same sign as S^b, but, ac­
cording to Jug, this is not necessarily the case at all. This 
problem is even more severe with integrals over d orbitals. 
Thus, the prospects for successful simple extension of 
semiempirical methods to the heavier elements appear dim. 

In this paper we will outline a third and potentially much 
more useful approach for predicting the properties of inor­
ganic compounds. This involves partitioning of the mole­
cule's electronic distribution into "valence" and "core" or­
bitals. Such a partitioning allows the valence orbitals to be 
treated by comparatively rigorous ab initio techniques, with 
a minimal amount of labor. The distinction between bond­
ing valence electrons and non-bonding core electrons is 
widely applied in many fields of chemistry; partitioning 
techniques use this distinction to its greatest possible com­
putational advantage. 

The theory of core-valence separation was widely studied 
in the early days of quantum chemistry2"11 and also has 
been the subject of considerable recent interest.12"24 In the 
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Table I. Effect on the Valence-Orbital Energies, e, of a Collapsed-Core Approximation Using Minimal-Slater Basis Sets 
as Compared to a FuIl-SCF Calculation (au) 

Full SCF Core-orthogonal valence Single-Slater valence 

Atom es ep es ep es ep 

C -0.67749 -0.40162 -0.43701 -0.37650 -1.17507 -0.36602 
Si -0.49231 -0.26977 +0.07224 +0.02941 -0.79525 -0.40373 
Ge -0.45619 -0.23995 +0.39250 +0.15463 -0.66859 -0.33266 

following sections we present a semirigorous valence-orbit­
al method, requiring no experimental data as input and with 
a minimum of adjustable parameters, which should greatly 
reduce the computation time as compared to a full ab initio 
calculation. Since, the core orbitals are not included explic­
itly, we will refer to this method as NOCOR (neglect of 
core orbitals). 

Method 

Assume that a full variational calculation on a particular 
system leads to a set of orbitals $ which may be partitioned 
into a singly-occupied valence orbital <£v and a set of core 
orbitals $c. These orbitals satisfy the conditions 

W0 = E0Q0 for 4>a C *0 (2) 
H(py = Ey<py (3) 

(<Pa\4>w) = 0 for 0C C *0 (4) 

As discussed above, it would be useful to be able to treat 
only the valence orbital. An attempt to perform a varia­
tional calculation of <f>v alone will fail if the effect of the 
orthogonality constraint eq 4 is not observed, since <t>v would 
collapse into the core region. Van Vleck25 called this "the 
nightmare of the inner shells." Early attempts26-27 to trans­
form the orthogonality constraints to the operator H were 
finally put on a sound footing by Phillips and Kleinman28 in 
1959. They showed that eq 2-4 could be transformed to an 
equivalent equation 

[H + V™]Xy = EyXy (5) 
where xv is no longer constrained to be orthogonal to the set 
$c and is termed the pseudowave function. VPK is the Phil-
lips-Kleinman pseudopotential, a repulsive, nonlocal poten­
tial defined as 

VPK
Xy - Zl^X-Ev- W e I x , ) (6) 

C 

It is easily seen that all <j>c are also eigenfunctions of the 
modified Hamiltonian [H + VPK], but with eigenvalue Ey 
rather than Ec. Hence the effect of VPK is to make 4>v de­
generate with all the 0C so that the contributions of the 4>c to 
Xv are arbitrary within a linear transformation. Any arbi­
trary Xv, with no orthogonality constraints, may be em­
ployed in a variational calculation without danger of col­
lapse to the core levels. Weeks et al.29 have published an 
excellent review of the pseudopotential method. 

Equation 5 is clearly valid for a Fock operator describing 
a single valence electron outside of the core, but an exten­
sion to a many-valence-electron system within the Hartree-
Fock formalism necessitates an approximate treatment. 
Weeks and Rice24 and Huzinaga and Cantu2! have dis­
cussed the theoretical problems involved. The difficulty is 
that valence electron-electron repulsion cannot be treated 
rigorously due to the failure of the core projection operator 
|0c)(0c| to commute with the operator ri2~K Nonetheless, 
we have found that useful results for atoms and closed-shell 
molecules may be obtained if these terms are treated as fol­
lows. Let the restricted Hartree-Fock Hamiltonian opera­
tor F replace the operator H of eq 2 and 3 

F<t>, = trfi (7) 
valence core 

F = T + U + Y. (2JV - Ky) + Y. (2J0 - K0) (8) 
V C 

where T, U, J, and K operators have their usual definitions. 
For atoms and molecules with open valence shells but closed 
core shells, a similar expression applies. We assume that 
any additional perturbation of an open valence shell upon 
the core will be small. To formulate an equation analogous 
to eq 6, the following three problems must be considered. 

(1) The Phillips-Kleinman pseudopotential (eq 6) re­
quires knowledge of the core orbitals and their eigenvalues. 
These are precisely those orbitals we wish to avoid calculat­
ing. We employ a "frozen-core" approximation, taking the 
core orbitals and their eigenvalues from atomic SCF calcu­
lations. Szasz30 has examined the frozen-core approxima­
tion in relation to pseudopotentials and found that it works 
quite well. With elements of higher atomic number, the 
core electrons become increasingly polarizable, however, so 
that difficulties may arise. We discuss this point in a later 
section. 

(2) The operator F (eq 8) depends explicitly upon the 
core orbitals. The exact calculation of the core-valence cou­
lomb and exchange integrals is very time consuming; we 
would prefer to simulate the effect of these integrals in 
some simpler manner. Other authors1719 have used a "col­
lapsed-core" approximation, treating the core orbitals as a 
point charge coincident with the nucleus. This has also been 
the general procedure in semiempirical methods. In Table I 
we present collapsed-core valence eigenvalues for the C, Si, 
and Ge atoms, using both single-Slater valence orbitals (not 
orthogonal to the core shells from a full SCF calculation) 
and the core-orthogonal SCF calculation that includes the 
core shells. In all these calculations minimal Slater basis 
sets with atom-optimized exponents31 were used. No provi­
sion for lack of core-valence orthogonality was made in the 
single-Slater valence-orbital calculations. It is evident that 
the collapsed-core approximation is uniformly poor and be­
comes progressively worse with increasing principal quan­
tum number of the valence shell. Fischer-Hjalmars8 has 
commented that use of Slater-type valence orbitals not 
orthogonal to the core orbitals seems to work better than 
does use of orthogonal SCF orbitals in a collapsed-core ap­
proximation. This is due to a cancellation of errors; the ne­
glect of core-valence orthogonality causes the eigenvalues 
to decrease, while the complete screening of the nuclear 
charge in the collapsed-core approximation causes them to 
increase. That such cancellation cannot be relied upon to 
give chemically significant results is evident from Table I. 

Rather than employ a completely collapsed core, we pro­
pose an exponential screening function f(r), so that 

Z^ = ZA - f(rA) (9) 
where 

lim /(rA) = 0 (10) 
r A - 0 

l i m / ( r A ) = N0
A (11) 

r A - -

where NC
A is the number of core electrons on nucleus A. A 

simple function satisfying these constraints is 

/ (rA) = (1 - e-a*r*)N0
A (12) 

Using a local potential such as this has the considerable 
advantage of requiring the calculation of only one-electron 
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Table II. Screening Exponents and Valence Eigenvalues for the Atoms, Calculated in Minimal-Slater Basis Sets 

Atom 
A 

Li 
Be 
B 
C 
N 
O 
F 
Ne 
Na 
Mg 
Al 
Si 
P 
S 
Cl 
Ar 
K 
Ca 
Ga 
Ge 
As 
Se 
Br 
Kr 

Core 
electrons 

2 
2 
2 
2 
2 
2 
2 
2 

10 
10 
10 
10 
10 
10 
10 
10 
18 
18 
28 
28 
28 
28 
28 
28 

Fun 5Lt 

s-Orbital 
energy 

-0.19489 
-0.30865 
-0.48389 
-0.67749 
-0.89255 
-1.15091 
-1.43064 
-1.73253 
-0.17525 
-0.24097 
-0.34684 
-0.49231 
-0.64336 
-0.81165 
-0.98855 
-1.17468 
-0.13951 
-0.18210 
-0.33246 
-0.45619 
-0.59029 
-0.71946 
-0.86069 
-1.00679 

p-Orbital 
energy 

-0.30037 
-0.40162 
-0.50336 
-0.50330 
-0.52641 
-0.56175 

-0.17433 
-0.26977 
-0.35847 
-0.38715 
-0.43917 
-0.50633 

-0.16920 
-0.23995 
-0.31898 
-0.32931 
-0.36784 
-0.42092 

Core-orthogonal valence 

Screening 
exponent 

<*A 

2.2435 
3.1194 
4.1777 
5.0916 
6.0003 
6.8963 
7.7957 
8.6972 
2.6204 
3.0040 
3.2693 
3.6719 
4.0548 
4.4302 
4.8010 
5.1775 
2.2638 
2.5058 
3.5980 
3.8243 
4.0448 
4.2580 
4.4698 
4.6820 

s-Orbital 
energy 

-0.19489 
-0.30865 
-0.47822 
-0.66952 
-0.88234 
-1.13883 
-1.41656 
-1.71638 
-0.17525 
-0.24097 
-0.34679 
-0.49292 
-0.64342 
-0.81114 
-0.98735 
-1.17240 
-0.13951 
-0.18210 
-0.33420 
-0.45809 
-0.59214 
-0.72125 
-0.86233 
-1.00793 

p-Orbital 
energy 

-0.30604 
-0.40959 
-0.51357 
-0.51538 
-0.54049 
-0.57790 

-0.17439 
-0.26916 
-0.35841 
-0.38765 
-0.44038 
-0.50868 

-0.16740 
-0.23805 
-0.31713 
-0.32751 
-0.36615 
-0.41979 

Screening 
exponent 

<*A 

1.9530 
2.6331 
3.6150 
4.4209 
5.2224 
5.9932 
6.7750 
7.5625 
2.3441 
2.6182 
2.8026 
3.1376 
3.4568 
3.7216 
3.9885 
4.3036 
1.6985 
1.8643 
3.2869 
3.4693 
3.6521 
3.8042 
3.9595 
4.1363 

Single- Slater valence 

s-Orbital 
energy 

-0.19489 
-0.30865 
-0.47638 
-0.66660 
-0.87837 
-1.13414 
-1.41101 
-1.70992 
-0.17525 
-0.24097 
-0.34291 
-0.48928 
-0.63865 
-0.81065 
-0.99099 
-1.17335 
-0.13951 
-0.18210 
-0.33172 
-0.45495 
-0.58800 
-0.71976 
-0.86426 
-1.00962 

p-Orbital 
energy 

-0.30788 
-0.41251 
-0.51754 
-0.52007 
-0.54604 
-0.58436 

-0.17826 
-0.27280 
-0.36318 
-0.38815 
-0.43674 
-0.50765 

-0.16994 
-0.24120 
-0.32127 
-0.32901 
-0.36427 
-0.41811 

Figure 1. Comparison of the model potentials obtained from fitting the 
orbital energies (dotted line), with the exact core Coulombic potential, 
obtained for a minimal Slater basis set (solid line). For comparison 
purposes, the curves for the carbon, silicon, and germanium atoms are 
plotted on a normalized linear scale which is set so that each curve 
ranges from 4 au at infinite distance (.R = ») to Z au at R = 0, Z 
being the atomic number. 

integrals. This specific function is chosen because (a) it 
greatly simplifies evaluating integrals over Slater-type or-
bitals, (b) it is closely related to the Hellmann potential, 
whose theoretical justifications are well known,33 (c) it is 
found to reproduce atomic orbital energies quite accurately, 
particularly for heavy elements {cf. Table II), and also (d) 
it satisfies all the conditions suggested by Simons13 (except 
angular momentum dependence, which is here incorporated 
in the V9*- term). 

In Figure 1, we compare the screening function of eq 12 
with the exact coulombic screening, as calculated using 
SCF minimal-Slater core orbitals with optimized expo­
nents. These exact coulombic screening calculations include 
what Slater32 calls both "inner" and "outer" shielding. 
Here we have chosen the a\ value so as to match the va­
lence eigenvalues as nearly as possible. It is evident that the 
shape of the screening function of eq 12 is quite good. One-
center core-valence exchange has been implicitly included 
in the screening parameter, a&. Although such exchange is 
small, it does cause the f(r\) curve to fall off more slowly in 
the valence region than does the curve including only cou­
lombic effects; at large distances, the f{rA) curve would 
therefore be expected to overemphasize core penetration ef­
fects. We therefore take ZA

e f f as Z A - NC
A in molecular 

calculations for integrals of the form 

Xi 
| 7 eif 

B L £ A _ _ X/ (13) 

when neither x;B nor xjc a r c centered on atom A. This has 
the added advantage of simplifying the calculation of these 
integrals, particularly in a Slater basis. 

(3) The operator F depends on all other valence orbitals. 
Since use of pseudopotentials causes these orbitals to be in­
determinate in the core region, this indeterminacy is intro­
duced into the Fock operator. We shall skirt this problem 
rather than solve it. If the different valence orbitals are 
given sufficient freedom, it is very possible that some* of the 
orbitals will collapse into the core region, not because of the 
lack of valence-core orthogonality, but to separate maxi­
mally the different valence electrons and thereby to mini­
mize valence-valence electron repulsion. Since the purpose 
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Table III. Atomic Transition Energies Calculated in Minimal-Slater Bases. s2p2(3P) ~* Indicated State (au) 
Configuration 

s2p2 

s2p2 

sp3 

sp3 

sp3 

sp3 

sp3 

sp3 

s2p2 

s2p2 

sp3 

sp3 

sp3 

sp3 

sp3 

sp3 

s2p2 

s2p2 

sp3 

sp3 

sp3 

sp3 

sp3 

sp3 

State 

1D 
1S 
5S 
3D 
3P 
3S 
1D 
1P 

1D 
1S 
5S 
3D 
3P 
3S 
1D 
1P 

1D 
1S 
5S 
3D 
3P 
3S 
1D 
1P 

FuU SCF 

0.066146 
0.165365 
0.098314 
0.320326 
0.386472 
0.588863 
0.565604 
0.631750 

0.045808 
0.114503 
0.076945 
0.233228 
0.279055 
0.426907 
0.408177 
0.453985 

0.045428 
0.113562 
0.069644 
0.221236 
0.266680 
0.403236 
0.388011 
0.433410 

Core-orthogonal valence 

Carbon 
0.066146 
0.165365 
0.082389 
0.304385 
0.370531 
0.573859 
0.549940 
0.616086 

Silicon 
0.045812 
0.114531 
0.078271 
0.234477 
0.280290 
0.428220 
0.409452 
0.455267 

Germanium 
0.045431 
0.113577 
0.073527 
0.225057 
0.270488 
0.407063 
0.391825 
0.437256 

Single-Slater valence 

0.066146 
0.165364 
0.064357 
0.290989 
0.357135 
0.574012 
0.545817 
0.611962 

0.046173 
0.116783 
0.064609 
0.224150 
0.270863 
0.422492 
0.403091 
0.449804 

0.045792 
0.114481 
0.064586 
0.217781 
0.263573 
0.402609 
0.386792 
0.432584 

Exptl 

0.0464460 
0.0986375 
0.153709 
0.292050 
0.342893 
0.482061 
0.445965 
0.546205 

0.0286995 
0.0701414 

0.220513 

0.032465 
0.074574 

0.272126 
0.262787 

0.264684 
0.252757 

of our approach is to reduce the number of basis functions 
needed, we simply do not include functions localized princi­
pally in the core region, thereby making the problem of in­
determinacy moot. 

To summarize, we have suggested that a valence-only re­
stricted pseudo-Fock operator may be written 

F'Xi 

where 

T + U + "£ (2J, - KJ + V Xi 

V - L 4 ^ +
 LI^C)(C, -€„)<«„ 

where 

Xi 
ArA) I c 

Xi 
B I (1 - e~*.r*)Ne

A 

Xj 

îXi 

(14) 

(15) 

(16) 

Xi 

for A = B or A = C 

/(O L. c Xi' 
rA 

Xj 

for A * B and A * C 

Application to Atoms. Atomic calculations were per­
formed using Roothan's open-shell method34 as modified by 
straightforward introduction of the potential of eq 15. For 
the atoms, we have taken the values (^ — ec) for each orbit­
al from minimal-basis-set STO calculations. As shown in 
Table II, we have optimized the values of «A to four deci­
mal places for the main-group elements from Li to Kr. 
These values of a\ were chosen so that the errors in the s 
and p eigenvalues relative to the full SCF calculation can­
cel. The <*A values were determined using atom-optimized 
exponents both for core-orthogonal valence wave functions 
obtained from the full SCF calculations as well as for non-
core-orthogonal single-Slater functions, i.e., the basis func­
tions corresponding only to valence orbitals. A comparison 
of these results with full SCF calculations is given in Table 
II. Since 0>K is clearly zero for the core-orthogonal func­
tions, comparing these results with those of the full SCF 
calculation shows the errors introduced by the /(/vO term. 

Comparing core-orthogonal with noncore-orthogonal re­
sults shows the additional error introduced by 05JC. 

As was discussed earlier, the difficulty in adapting pseu-
dopotentials to the Hartree-Fock formalism lies in the 
treatment of electron repulsion. We treat this problem in ad 
hoc fashion by simply adjusting the aA values to the partic­
ular basis set employed. Lower <*A values were required for 
the single-Slater valence orbitals than for the core-orthogo­
nal functions. Since removal of the inner nodes of the va­
lence functions increases the electronic repulsion between 
two electrons in a valence orbital, a counterbalancing de­
crease in the a A values is necessary. 

The computed transition energies from the ground states 
of C, Si, and Ge to a number of excited states are listed in 
Table III. The agreement of the full SCF calculation with 
those using core-orthogonal valence and single-Slater va­
lence orbitals is quite good, indicating the effectiveness of 
the frozen-core approximation, the screened nuclear charge, 
and this adaption of the Phillips-Kleinman pseudopotential 
for atomic calculations. The agreement with experiment in 
both cases is only fair, except for triple-triplet transitions, 
for which the correlation energy of both states is about the 
same. This order of accuracy is not unexpected in any cal­
culation that relys on the Hartree-Fock approximation. 

Application to Molecules. In considering molecular sys­
tems, we treat the quantity («v - tc) in eq 15 somewhat dif­
ferently than in the atomic case. The «c values are again 
taken from atomic calculations, but ev is taken as the lowest 
molecular valence eigenvalue computed in each SCF cycle. 
Use of different ev values for different orbitals was possible 
in the atomic case, where the Fock matrix is symmetry 
blocked; use of a common ev value is necessary in the molec­
ular case, where symmetry is in general lacking, in order to 
assure that all the orbitals are eigenfunctions of the same 
operator and therefore orthogonal. 

We have tested the method on the ' 2 g
+ states of the dia­

tomic molecules C2, Si2, and Ge2. While the >2g
+ is the ex­

perimental ground state only of C2 (Si2 and Ge2 have triplet 
ground states), this series seems to be an apt test for the 
method. Comparison of the same state for the three mole­
cules indicates trends as atomic number increases; further-
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Table IV. Valence Orbital Energies (au) 

Orbital 

°% 
0U 

*u 

°g* 
4* 
" U * 

C,(STO/3G); 
R = 1.242 A 

Full SCF 

-1.0574 
-0.5087 
-0.4532 

-0.0733 
+0.2293 
+0.9591 

NOCOR 

-1.0304 
-0.4985 
-0.4381 

-0.0878 
+0.1900 
+0.5181 

Si2(STO/3G); 
R = 2.115 A 

Full SCF 

-0.6508 
-0.4156 
-0.2456 

-0.0254 
+0.0918 
+0.3503 

NOCOR 

Occupied 
-0.6550 
-0.4337 
-0.2595 

Virtual 
-0.0195 
+0.0361 
+0.2901 

Si2(uncontracted); 
A = 2.115 A 

Full SCF 

-0.6947 
-0.4322 
-0.2718 

-0.0586 
+0.0636 
+0.2458 

NOCOR 

-0.6591 
-0.4157 
-0.2579 

-0.0470 
+0.0482 
+0.2189 

Ge,(STO/3G); 
/5 = 2.328 A 

Full SCF 

-0.6082 
-0.3833 
-0.2208 

-0.0124 
+0.0973 
+0.3359 

NOCOR 

-0.5925 
-0.4034 
-0.2313 

-0.0137 
+0.0649 
+0.3736 

Figure 2. Valence-orbital electron-density plots of a cross section 
through the digermanium molecule, as calculated in an STO/3G mini­
mal basis set (right-hand plots) and in the NOCOR approximation 
(left-hand plots). The electron density is plotted perpendicular to the 
geometric plane in which it is measured. The Ge-Ge distance is 2.328 
A. 

more, bonding in these molecules is in itself an interesting 
problem.35 While comparison with experimental results is 
somewhat lacking for this series, we are more interested in 
comparison with full SCF results in the present work, since 
this latter agreement is the best we can hope to achieve. In 
this work, three Gaussian functions were contracted36 in a 
least-squares fit to each Slater orbital of a minimal-Slater 
basis set for each molecule (i.e., an STO/3G basis set was 
used). In order to test the effect of allowing greater freedom 
in the computation, we repeated the disilicon calculation in 
an uncontracted valence Gaussian basis, employing the 
same valence primitive functions as in the STO/3G calcula­
tion, but leaving their contribution to each molecular orbit­
al unconstrained. In all cases, the core functions entering 
the pseudopotential were contracted to the core orbitals re­
sulting from minimal-Slater atomic calculations. In order to 
simplify the integrals involved, the screening potential of eq 
12 was fitted by a sum of six Gaussian functions. The a A 

values obtained from minimal-basis atomic calculations 
(Table II) were used, based on the assumption that the core 
experiences relatively little change in going from an atom to 
a molecule (the frozen-core approximation). As may be 
seen from Table IV, the valence-orbital energies agree well 
with the equivalent (i.e., STO/3G) full-SCF calculations. 

A X I A L D I S T A N C E 

Figure 3. Plots showing the variation in electron density along the mo­
lecular axis for the two valence a orbitals of the digermanium molecule 
and a similar plot (top) corresponding to the filled pair of ir orbitals of 
this molecule measured along a line bisecting and perpendicular to its 
internuclear axis (Ge-Ge = 2.328 A). The solid line in each plot corre­
sponds to the STO/3G calculation and the dotted line to the NOCOR 
approximation. For the full calculation, the peaks in the core region are 
shown in detail only for the 7<rg orbital and are truncated for both a or­
bitals shown. 

Figure 2 shows a comparison of the electronic distribu­
tion of the NOCOR molecular orbitals with those of a full 
SCF calculation for the digermanium molecule. The two 
distributions are seen to be essentially identical outside the 
immediate region of the core. Similarly, the other molecules 
investigated in this study also exhibited electron-density dis­
tributions having the proper shape for the NOCOR orbitals 
outside of the core region. In the two lower plots of Figure 
3, the electron-density profile along the molecular axis for 
the STO/3G NOCOR approximation (dotted line) is com­
pared with the results for the full minimal-Slater calcula­
tion, and at the top of this figure, a similar comparison is 
made for the filled valence-shell •K orbital as determined 
along a line bisecting and perpendicular to the internuclear 
axis. Note that for the NOCOR approximation the elec-
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Table V. Calculated Equilibrium Bond Distances and Stretching Force Constants 
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Molecule 

C2(STO/3G) 
Si2(STO/3G) 
Si2(uncontracted) 
Ge2(STO/3G) 

Full SCF 

1.323 
2.080 
2.116 
2.087 

Bond distance, A 

NOCOR 

1.289 
2.107 
2.033 
2.352 

Exptl<* 

1.2425» 

Full SCF 

13.28 
4.20 
3.16 
4.78 

Force constant, mdyne/A 

NOCOR Exptl* 

14.26 12.25» 
3.28 
3.12 
3.28 

a The experimental ground states of Si2 and Ge2 are triplet states, b Reference 35. 

tronic charge is, not surprisingly, drawn slightly in toward 
the core region for orbitals 7<rg and Ian. Note also that this 
effect shows up indirectly for the plot given for orbitals 4xu 

in that there is a slight diminution in the NOCOR peak in­
tensities. Figures 2 and 3 demonstrate that a reasonably ac­
curate description of the valence-shell electron densities is 
well within the grasp of the NOCOR method. 

In computing potential curves, we have taken the com­
bined core-core and nuclear-nuclear repulsion energy as 

(ZA - JVC
A)(ZB - JV11B) 

RA 
(17) 

Inspection of Figure 1 suggests that the core potential falls 
off fast enough that this should be an excellent approxima­
tion at normal interatomic separations. 

Equilibrium bond distances and force constants are re­
ported in Table V. While the predicted bond distances and 
force constants are in good agreement for both C2 and Si2, 
the bond distance for Ge2 is somewhat too long and the 
force constant too small. It is possible that the frozen-core 
approximation begins to break down as the core functions 
become more polarizable; a simple calculation37 of core po-
larizabilities based on Slater screening constants gives 
values of 0.01, 0.34, and 5.40 au3 for the cores of C, Si, and 
Ge, respectively. Other authors3 8 - 4 0 have reached similar 
conclusions concerning the frozen-core approximation. 
However, to our knowledge, no other pseudopotential calcu­
lations have been performed by others on systems of com­
plexity comparable to Ge2, so that as yet we are not able to 
make any general conclusions in this regard. We are investi­
gating other molecules containing third- and fourth-row 
atoms at this time and hope thereby to delineate the scope 
of applicability of the NOCOR procedure as outlined here 
(using one parameter per atom for the screening function) 
and to see if adjustments are needed to obtain more suitable 
valence-shell wave functions for such molecules. 

Finally, to test the applicability of this method in predict­
ing equilibrium bond angles and bending force constants, 
we have calculated these properties for PF3. In this case we 
have also employed atom-optimized Gaussian func­
tions41"42 for the core potential, and again used an STO/3G 
basis set for the valence orbitals. The values we obtain, as 
well as equilibrium bond lengths, stretching force constants, 
and the barrier to inversion, are reported in Table VI. It 
may be seen from these results that the NOCOR method is 
in good agreement with both full SCF calculations and the 
experimental values, except for the inversion barrier. This 
again is not surprising, since inversion barriers are generally 
extremely sensitive to inadequacies in basis sets. Indeed, it 
appears43 that large near-Hartree-Fock computations are 
needed to obtain a reasonably acceptable inversion barrier 
for ammonia, for example. 

Conclusion 

The NOCOR method promises to reduce greatly compu­
tation times relative to a full ab initio calculation, while re­
taining essentially the same level of accuracy. Systems con­
taining heavy elements which cannot feasibly be treated in 
a full calculation may be routinely investigated using 

Table VI. PF3 Molecular Properties 

Property 
FuU 
SCF" NOCOR Exptl* 

Equilibrium angle, deg 98.1 
Equilibrium bond 

length, A 
Symmetric stretching 

force constant, 
mdyn/A 

Symmetric bending 2.59 
force constant, 
mdyn A 

Barrier to inversion^ eV 5.82 

96.9 
1.472 

6.60 

2.07 

96.9 ± 0.7 
1.563 ± 0.002 

6.23 ± 0.13 

1.96 ± 0.04 

8.97 

a L. J. Aarons, M. F. Guest, M. B. Hall, and I. H. Hillier,/ Chem. 
Soc, Faraday Trans. 2, 5, 643 (1973). »E. Hiiota and Y. Morino, 
J. MoI. Spectrosc, 33, 460 (1970). c Corrected for zero-point 
vibration. 

NOCOR. In contrast to (1) conventional SCF calculations, 
in which the time required increases according to the fourth 
power of the number of basis functions, and (2) valence-
bond calculations which increase as JVTV/ for N electrons, 
the computation time for a NOCOR calculation is a con­
stant for a series of compounds in which one or more atoms 
are replaced by the successively heavier atoms from the 
same group of the periodic table. This relationship leads to 
large savings in computer time for molecules based on the 
heavier atoms. Thus, for example, only 2 min is needed to 
obtain the NOCOR wave function of digermanium as com­
pared to 92 min for the equivalent full-core computation, 
using our Sigma-7 computer. We are currently applying the 
method to other areas of the periodic table, particularly the 
dihalogens and phosphorus halides, in an effort to deter­
mine further the extent of its applicability. 

Acknowledgment. This work was supported by the Air 
Force Office of Scientific Research under Grant AFOSR-
72-2265. We wish to thank Mr. B. H. Robinson and Drs. J. 
M. Howell and M. C. Zerner for their helpful comments on 
the work. 

References and Notes 

(1) K. Jug, 77ieor. CHm. Acta, 23, 183 (1971). 
(2) C. A. Coulson and W. E. Duncanson, Proc. R. Soc. London, Ser. A, 181, 

378(1943). 
(3) W. E. Moffitt and C. A. Coulson, Philos. Mag., 38, 634 (1947). 
(4) R. S. Muiliken, J. Chem. Phys., 19, 912 (1951). 
(5) J. W. Uinnett and A. J. Poe, Trans. Faraday Soc, 47, 1033 (1951). 
(6) C. R. Mueller and H. Eyring, J. Chem. Phys., 19, 934 (1951). 
(7) J. F. Mulligan, J. Chem. Phys., 19, 347 (1951). 
(8) I. Fischer-Hjalmars, Ark. Fys., S, 349 (1952). 
(9) H. J. Kopineck, Z. Naturforsch. Toil A, 7, 314 (1952). 

(10) A. B. F. Duncan, J. Chem. Phys., 20, 951 (1952). 
(11) R. C. Sahni, Trans. Faraday Soc, 49, 1246 (1953). 
(12) G. Simons, Chem. Phys. Lett., 12, 404 (1971). 
(13) G. Simons, J. Chem. Phys., 55, 756 (1971). 
(14) M. E. Schwartz and J. D. Switalski, J. Chem. Phys., 57, 4125, 4132 

(1972). 
(15) L. R. Kahn and W. A. Goddard, J. Chem. Phys., 56, 2685 (1972); C. F. 

Melius, W. A. Goddard, and L R. Kahn, ibid., 56, 3342 (1972). 
(16) P. Gombas and T. Szondy, Int. J. Quantum Chem., 4, 603 (1970). 
(17) M. C. Zerner, MoI. Phys., 23, 963 (1972). 
(18) R. Manne, Theor. CHm. Acta, 6, 299 (1966). 
(19) D. B. Cook, P. C. HoIIiS, and R. McWeeny, MoI. Phys., 13, 553 (1967). 
(20) T. Berts and V. McKov, J. Chem. Phys., 54, 113 (1971). 
(21) I. Ohrn and R. McWeeny, Ark. Fys., 31, 461 (1966). 
(22) S. Huzinaga and A. A. Cantu, J. Chem. Phys., 55, 5543 (1971). 

Coffey et al. j Pseudopotential SCF'Methodfor Valence-Only Molecular Calculations 



1662 

(23) J. D. Switalski, J. T. J. Huang, and M. E. Schwartz, J. Chem. Phys., 60, 
2252(1974). 

(24) J. D. Weeks and S. A. Rice, J. Chem. Phys., 49, 2741 (1968). 
(25) J. H. Van Vleck and A. Sherman, Rev. Mod. Phys., 7, 167 (1935). 
(26) H. Hellmann, J. Chem. Phys., 3, 61 (1935). 
(27) P. Gombas, Z. Phys., 94, 473 (1935). 
(28) J. C. Phillips and L. Kleinman, Phys. Rev., 116, 287 (1959). 
(29) J. D. Weeks, A. Hazi, and S. A. Rice, Adv. Chem. Phys., 16, 283 (1969). 
(30) L. Szasz, J. Chem. Phys., 49, 679 (1968). 
(31) E. Clementi and D. L Raimondi, J. Chem. Phys., 38, 2686 (1963); E. 

Clementi, D. L. Raimondi, and W. P. Reinhardt, ibid., 47, 1300 (1967). 
(32) J. C. Slater, "Quantum Theory of Atomic Structure," Vol. 1, McGraw-

Hill, New York, N.Y., 1960, p 227. 
(33) Cf. ref 26. For a more detailed treatment, see L. Szasz and G. McGinn, 

"Buffer effects" on the hydrolysis of urea catalyzed by 
crystalline urease (EC 3.5.1.5) are well known. These ef­
fects include the variation of the pH of maximum activity,1 

differing relative maximum activities,1 varying susceptabil-
ity to substrate inhibition,2-3 and differences in activation 
energy data.2-4 To date, the exact nature of the buffer con­
tribution to these effects is not completely understood. In­
deed, it is thought by some5 that these effects arise from the 
method of enzyme preparation, or the presence of several 
isoenzymes. 

This report concerns a thermochemical study of the hy­
drolysis products of urea. The results show that the product 
formed is dependent upon the buffer used, and this informa­
tion is helpful in elucidating some of the above "buffer ef­
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Theory 
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AH = -AT(k)/nv (1) 
For the hydrolysis of urea, there is sufficient thermo­

chemical data available to calculate theoretical heats of 
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H+(aq) + C02(aq) + 2NH3(aq) + H2O(I) — 

2NH4*(aq) + HCO3-(aq) (3) 
H*buffer(aq) — buffer (aq) + H*(aq) (4) 

4 are pH dependent. From data on heats of formation,6 the 
heat of reaction for process 2(AH2) is found to be +7.29 
kcal/mol urea. The heat of reaction of processes 3 and 4 
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Aif3>4(kcal/mol u rea ) = 

[ H ^ 1 ( A W H 2 C O 3 - A** , , . , ) + 

K1K2(AHH20Q2 + AffHCQ3- - 2AHMtJ 

[K*]2 + [H+]^1 + K1K2 

2[H-] (AHwfeT - AffNHV) ( 5 ) 

[H+I + KjKh 

represent the ionization constants for H2CO3 , H C O 3
- , and 

NH 3 , respectively. The AH values are for the ionization of 
a single proton from the subscripted species,7 and it is as­
sumed that there is always a sufficient amount of buffer 
present so that the pH change is virtually zero. Figure 1 il­
lustrates the variation of the overall theoretical AH (=AH2 

+ AHi1A1) with pH in phosphate buffer. This is a composite 
of three curves where the buffer systems are H 3 PO 4 -
H 2 PO 4 - , H 2 P O 4

- - H P O 4
2 - , and H P 0 4

2 - - P 0 4
3 ~ , and the 

appropriate A^buffer was used for each. The overall curve 
represents the joining of these three segments. 

The above discussion and results are valid as long as all 
of the carbon dioxide produced is capable of being aquated. 
If the solution is saturated with CO2 and its hydrolysis 
products before the reaction is initiated, then C0 2 (aq) is re­
placed by C0 2 (g) in eq 2. The primary effect of this is to 
change AH2 to a value of +11.98 kcal/mol urea, while the 
pH-dependent expression 5 loses the first term involving 
CO 2 and its hydrolysis products. The dashed curve in Fig­
ure 1 illustrates the results expected in this situation. If the 
solution becomes saturated with CO2 during the course of 
the hydrolysis, the AH observed will lie somewhere between 
these two extremes. 

In addition to the classical products, it has been shown 
that ammonium carbamate is a product of the hydrolysis of 
urea in alkaline, unbuffered solutions.8'9 Reaction 6 sum-
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Abstract: Hydrolysis products of the urea-urease system have been deduced from thermochemical measurements. Two dis­
tinct sets of products are found which depend upon the buffer used. Classical products (HCO3- and NH4

+) are found in 
phosphate (pH 7.5 and 6.7) and maleate (pH 6.7) buffers. Ammonium carbamate in virtually quantitative yields is obtained 
in citrate (pH 6.7) and Tris (pH 7.5) buffers. The possible effect of these two sets of products on previous kinetic and ther­
modynamic studies is discussed in terms of buffer effects. 
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